PHILOSOPHICAL TRANSACTIONS.

I. Researches in the Integral Calculus—Part I1. By H. F. TaLsor, Esq. F.R.S.

Received October 26,—Read November 17, 1836.

§ L.
HaviNe explained a general method of finding the sums of integrals, I propose to
apply it to discover the properties of different transcendents, beginning with those of

the simplest nature.
In the first place, therefore, I will show its application to the arcs of the circle and

conic sections.
As there will be frequent occasion to make use of cubic equations, I shall suppose
their general form to be

B—paltqgax—r=0.
When therefore the letters p ¢ » occur without explanation, it will be understood that
they represent these coefficients.

§ 2. dpplication to the Circle.

. d . .
Let us take the integral f I——;;g, and suppose nothing to be previously known con-

cerning the properties of the function which it represents.
Let us put, in the first place,
l14+22=ve . 22—vae4+1=0.
The two variables « y will be roots of this equation, so that they must satisfy the con-
dition z y = 1. Also

da dy _dx  dy 1 dx _
l+w9+1+‘y9—'n+~—”5'sx =0,

dz . . R
because S — = 0 in any equation whose last term is constant.

dx dy
1_Htg,+ 1_L{y,,:const.
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2 MR. TALBOT'S RESEARCHES IN THE INTEGRAL CALCULUS.

We thus obtain a characteristic property of the function

dzx
Tre =/

namely, that if vy = 1,
Jx + fy = const.
The truth of which is otherwise evident, for if # = tan 0, then y = cotan ¢
Jx=10and fy =90°—04.
~.fx + fy = const.
Next let us investigate such a relation between three of these integrals that they
may have an algebraic sum.

v+ x
ax

1
Assume 3 = , whence

14
L4val4+(1l—a)z+v=0,
where «a is any constant quantity.

‘The three variables # y ¥ must be roots of this equation, which however gives only
one necessary relation between them, viz.

x4+y+z=ayx=.

We have
a v
1+x2=;+1
d d
naSirm=vS—-+Sda
ButS%:%,andem:—dv,

dax
.‘.dSm—QZdv——dv:O,

R A2
e l+x2—const.

whence we obtain this well-known theorem in trigonometry.

If the sum of three tangents equals their product, the sum of' the arcs is constant,
The constant = 180°.

Next let us suppose

1 v+
1l +a°" aa®

Bt w—a)2 4 a4 v=0.
This gives only one necessary relation between the roots, viz.
g=xy+arzt+yz=1.

For the two other coeflicients (v — @) and v, may be made to agree with any two
arbitrary quantities. Since we have
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a v 1
el

dx dzx dz
; ..aSm@=vS—F+S;—.
1
ButS — = Z, and here
X r
g=1landr=—vo
1 1
'.STZ'— —_— —-—v‘,
whence
dx dv
SE=—v%
and
dx dv
vS ;;:-——;.
Also
dx dyu
S:;::;;
Therefore
dzx dv dv
asl-+xr— 7.+”;:=0

S dx
oS T 2= const.,

which furnishes this other well-known theorem, viz. If three tangents are such that
the sum of their products = 1, then the sum of the arcs is constant. The constant in
this case = 90°.
The same theorem results from the supposition
1
Tra=vtars

for this gives
v — 1

0
P4 —att x4 — =0,
and ¢ = 1 is the only necessary relation between the roots. Also

Siis=vSde+aSadn.

But
Sx2=p2-2q=z—i—2,
whence
Srdr =2 gv.
Also
Sdm=h—§£
a
Therefore
Sreli=—2dr viv_,, QE.D.
B2
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These theorems, and the analogous ones which exist between any number of tan-
. dx
gents, are well known. But when we apply the method to the integral f —4—/—1—{—;’2,
we obtain relations between circular arcs which appear to be of a more novel de-
scription, and perhaps have not hitherto been noticed. Of which I will proceed to
give an example. Let us suppose
1

Vice o veth

whence
Ptiet(p—1)e—2=o.
In this instance the symmetrical v = —?—, and therefore making this substitution,
we have
a4+ ra?+ (;;— ]).z'—r::O.

There are therefore two necessary relations between the three roots, viz.

7.9,
p:—r q=—l—l——l.
And since
1
—4/_1-—w“=vw+l
S Af=vSeda+Sda
But
2
SxZ—pZ_‘)q=r2— Z‘——2 =Z§+2
Sxdw:rzr
2 7rdr
vadw=7 —-2—=dr.
Also
Sde=—dr
dx
'.Svl_ﬁ_dr—dr_o,

whence this theorem :
If the sines of three circular arcs are roots of the equation

3 2 f_ —_—
a4 ra? 71 e—r=0,

the sum of the arcs is constant.
I will give a numerical example of this theorem.
The value of r is arbitrary. Suppose it to be

=3 —4/12 = — 0°4641016.
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The roots of the equation then have the following values :

x= 05 = sin 30° =sin/
y= 094565 =sin71° 1 =sind
g = — 098154 = sin — (78°59') = sin ¢';

and the theorem gives the sum of the arcs, or S § = const. The word sum is used
in an algebraic sense, as including the case where one or more of the arcs are to be
taken negatively, or its definition is
Sd==40+017"
The same ambiguity in the signs pervades the whole of this class of formule. In
the present instance
S0=040—1¢
= 30° 4 71°1' 4 78°59' = 180°
.. the constant is a semicircle.
Ex. 2. Letr = 0.

B —-x=0;
and the roots are
=0 = sin 0°
y=1 =sin90°
g = — ] = sin — 90°
0=0" ¢ =090° ¢ = —90°

and the same formula gives, as before,
0+ 0 —0"=180°
A very extensive class of formulee respecting the arcs of the circle may be obtained

in a similar manner, by applying the method more generally. Thus, if we make the
supposition

1 -1
[l.] ‘VT—'—'__—‘;=ao+alx+ ..... +a z R

@ n—1
where @y, @y, ... .. a,_, are constants, or any entire rational functions whatever of
the variable v, we have an equation of 2 dimensions, of which x is a root.
If x = sin 4, and the other roots are sin d,, sin é,,......... sin d,,,, then
dx

V11—

0,

and the other integrals = 6,, ;... ,,. And by a direct process we obtain the final
equation
Sé,or 0, + 0+ ....+ 6, =f.v + const,
S . v being an entire rational function of v.
But since it is generally admitted that no combination of circular arcs can be equal
to an algebraic quantity, I conclude that we have generally

S.v=0.
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If we consider the generality of the supposition [1.], which admits any number of
arbitrary quantities, it certainly appears remarkable that this equation f'.» = 0 should
be always verified.

§. 3. Application to the Parabola.
If the tangent at the vertex of a parabola be taken for the axis of abscisse, and the
semiparameter = 1, then if x be the abscissa, the equation of the curve will be
2y = a?,
and the arc, which may be designated as arc «,

=/ da viTa
The known value of this is

[2.] Arce = Lo /142% + Llog (x + /1 +22).
This is a function of x, the properties of which appear to have been hitherto little
examined. I will establish two theorems concerning it, which are of considerable
simplicity.
Theorem I.—If three abscissce are the roots of the equation

2
28 — ra? 4 (%+ l)m—-r=0,
the sum of the arcs equals the sum of the abscissce.

Since each arc is greater than its corresponding abscissa, it is evident that the
word sum is to be understood in an algebraic sense, or that at least one of the arcs
must be taken negatively.

Theorem II.—If three abscissee are the roots of the equation

2 52 2
a 46 ).22 + agb =0,
the sum of the arcs equals the product of the abscissce.
This theorem is remarkable for its simplicity, when it is considered that it contains
two arbitrary quantities, @ and b, which, as it appears, may have any values.

(12
w3-—ax‘2+(z—ab—

Demonstration of Theorem I.
Put,\/l 4 a?=a?2+va -+ 1: whence

r.j B42v2+ w2+ 1)a+42v=0.
Also
de,\/l+m2=Sm2dx+vSardw+de

.‘.Sfdx\/l+x2=—s—gi+ vSxdx+ Sa.

3 3
The first term S—;— = l;— — p ¢ + rinall equations. Herep = — 20 ¢=10241

= ——20.
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To find the value of the second term / v S x d x, we have
S2=p?—~2¢g=40v2— (202 4+2) =202 —2
sSzder=2vdv

fvSmdw=f2v2dv=-2—3v—3.

Therefore these two terms destroy each other. Consequently we have simply

sfdz/TFa =Sz +C.

It appears by trial that C = 0, and the equation between the roots [ 1.] becomes,

and

by writing for v its value -:2—1,
2
x3—rm2+(%+ 1)m—r=0
. the sum of three arcs =S x = ». Q.E.D.
Ezxample.—Let us suppose r = 4 4 2 /2
= 6'828427.

The three roots will be

r =1

y = 4'2042580

2 = 1°6241690.

Calculating the arcs accurately by the formula [2.], we have
Arcx = 1147793
Arc y = 10156004
Arc 3 = 2'179773
In forming the sum we must notice that arc 2 and arc % are to be accounted nega-
tive. Consequently we find by subtraction,
Arc y = 10156004
Arcxz 4 Arc gz = 3327566

Sum = 6:'828438
r = 6°828427

Error of calculation = 0000011

Thus the calculation verifies the theorem with considerable exactness, and shows

that no constant is required to be added to the integral.
Since the sum of these three arcs is algebraic, and that each contains a logarithmic
part, the sum of these three logarithms must be = 0: for if not, it must be an alge-
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braic quantity, which is considered to be impossible. This is verified by calculation ;
for
2 arc ® = x /1 F 2% + log (x + /1 +22).
Calling log (x 4+ A/1+4?) =f.x, we have
fx = 0881372 f.y = 2143099
fzx=1261722  fx 4 fz = 2143094

2:143094 sum = 0000005

This sum approaches zero very nearly. The quantities fx, f% are subtractive, being
parts of 2arc 2 and 2 arc %, which have been already shown to be so.

Demonstration of Theorem I1.

Let v /T+ 2% = na?® + & + v, where = is a constant,

B+ % 2?4 l_f_%.zg’fix + gn_g =0,
and
vS/1+22. de=nSa?dr+ Sxdux,
the term v S d x being omitted ; because, since Sz = :;—2- is constant, the factor
Sdx = 0.
The formula S 23 = p3 — 3 p ¢ + 3 r gives
S a8
S =F—pa+n
(observing that p is constant and = — ;2;) Sx?dx = % dq + dr. Therefore

the first term, or
nSatdex=2dg+ndr.

The formula S 22 = p? — 2 ¢ gives the second term, or
Szdae=—dg
sonSxtdr+Sxde=dg+ndr,

or

oS+t . de=dg+ndr.

Now we have (omitting constants),

2 v?
(=7 —m
] 2vdv
dq=7dv-— pra
and
2

ndr= — —=dv

sodg+ndr
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Therefore
—_— 2dw
SJ1+w2.dm; - =
S‘/j\/l-i—mz.dm: — S =r
" 2 . . .
Now writing n = — —, v = b, we have the equation in the form given above, viz.

a® b?

2 2
S (AN S @b _ o,
@ —ax +(4 ab 4)w+2_0,

and therefore the theorem is demonstrated.

Examples.
Ezx. 1. Let a = 2 4+ /2, b = 1, the roots of the equation are
=1
1 V541
TP Ve—
—e—1 V5 —1
TP e v
or
z =1 soarc @ = 1°147793
y = 3906278 ..arcy = 8911399
g = — 1492065 .. arc x = 1'935186
oS =238414218 =2+ /2 =a
and «
zyzs= — (3+2 +2) = — 5828426.

Now we have
Arc y = 8911399 = (1.)
Arc x 4+ Arc & = 3'082979 = (2.)

Sum (subtractive) = — 5828420 = (2.) — (1.)
ry = — 5828426

Error = 0000006

The quantity which we previously called fa = log (z + +/ 1+ 2?) has the follow-
ing-values : '
fo = 0881372
Sy = 2071728
[z = 1190354
.. we have fo 4+ fz = 2071726
Sy =2071728

Error = 0:000002
Thus it is seen that the logarithmic parts destroy each other as in the first theorem.
MDCCCXXXVIL c
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3 4 . . .
Ezx.2. Letx=-  y =3 be assumed for two roots of the equation; in which
5 42 . 35
case we find ¢ = — —g—, b= +> and the third root s = — 1—;

Since x y = 1 in this example, the theorem gives the sum of three arcs = ry x ==,
which we propose to verify.
Now the formula

2arcx = xA/1+ 22 + log (z + /1 +F2?)

gives
3
2 arc (—4—> = %g + log 2

2 arc (:;f-) =%)+log3

. 455 .
the sum of which two = 1= + log 6

35\ _ 1295
and 2 arc (Té) = a4 + log6.

Therefore the sum (subtractive)

__ 840 __ 70
T 1447 T 12
) _ 35
c.arcx 4arcy —arcs = — 5
But on the other hand we have
55

Therefore the sum of the arcs = g: which was to be shown.

§ 4. Analogous Properties of the Circle and Parabola.

There is a manifest analogy between the area of the circle and the arc of the para-
bola, the former being expressed bM d x~/1— 22, the latter by f daa/1 ¥ 2, which

only differ in the sign. The same analogy is seen in the theorems which may be de-
duced respecting these integrals. Thus, for instance, the Theorem II., which we
have demonstrated in the parabola, may be applied, with a slight modification, to
the circle. If we put

v /12 =na? +a+v,

we find the sum of three integrals of the form
n/.(l.z"\/li(za: +r,

the constant being = 0. The upper sign applies to the parabola, the lower to the
circle. The demonstration of the latter case is omitted for brevity, being exactly
similar to that of the former.
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The three variables x y 2 are roots of
a® . ab a?b
[1.] w3—am2+(z-—-ab+ 4)“""7[:0’

the upper sign applying to the parabola; « and b being two arbitrary quantities.
To exemplify this theorem in the circle.—Since

Qfdm\/l—xz =x+/1—a? + arcsin z,
the theorem gives
—2r=Sxz4/1—2a%+ Sarcsina.
The latter term, being the sum of three circular arcs, cannot form any part of the
quantity — 2 r: therefore we must have this other equation,

Sarcsinx = 0,

which we propose to verify.

6
Ezx. 1. Suppose a = —, b= -i—, the equation [1.] becomes

5
6 7 12
3 s 2 o T
x F =5+ 55=0
and its roots are
4
=7
y=1
-3
= —
o

.arc sin o = 53°8' =14
arc sin y = 90° = /¢
arc sin g = — 143°8' = ¢'
S0+ 0 40 =0,
in accordance with the theorem.

We may assume two of the arcs arbitrarily, and thence determine the third, so as
to satisfy the theorem.

4 12 56 12 .
Ex. 2. Thus, let s = —, y =5, wefind e = 57, b = =. Here it happens that
b o e qe .
2y = -a—g— = gz therefore, dividing the equation
a®b

ryY D == — -—2“

by the equation
ab

™y =g
we find the third root

g = — q.

c 2
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Now these three values satisfy the theorem ; for we have

. 4
arc sin - = 53°8' =4

. 12
arc sin 5 = 67° 28' = ¢

arc sin —\gg: - 120° 31 = ¢'
and
04040 =o0.
\ 5. Application to the Ellipse.

In order to obtain a relation between three elliptic integrals, the simplest suppo-
sition which we can make appears to be

1 — 2 a?
Vi =t
2

9 1 — % — Q
3 22 =
w+vw+ 7 . X 7)~_O.

whence

. . . 2 .
This determines the value of the symmetrical v to be = —-: and therefore making

this substitution we have

ws-{-rwz—l-(lze .7"2——1):0-—7'::0
and .
1 — ¢ 2
Ve =T,
whence )
1 — 2
Sdaoy/ 5 = 2 50da + S da
But since
— P2 2
Sa?=p?—2q¢=1r? - (l Qe .7"2—-2):]—28 22
.'.Swdw:lzerdr
.2 2
..;—Swdw=(1+e)dr.
Also

Sda = —dr
. ZSade+Sde=edr

1 — é%a®
'.Sdm\/""l‘"‘_—xg—'::ezdr

1 — 22?2

S‘/.d.l‘ T =ez7'+,C.
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Or, if we suppose the radical to have a negative sign,

Sfdw\/l—l——_—_fi—;f=0—ezr;

whence the following theorem : If three abscissce of an ellipse are roots of the equation
1 — &2
a93+rx2+( 4e 72— l)x——r:O,

the sum of the arcs = 2 Q — é®r, Q being the quadrant of the ellipse.
Ex. 1. Let e = 0, or the ellipse be a circle ; the theorem then assumes this form :
If three abscisse of a circle are roots of the equation

2
:c3+ra:2—|—(%— 1)1‘—7‘:0,

the sum of the arcs is a semicircle; the truth of which has been demonstrated pre-
viously (vide page 4.).
Faenanr’s theorem becomes illusory when e = 0: it is therefore interesting to ob-
serve that the present theorem, on the contrary, has a real application to the circle.
Ex. 2, Let e have any value, and » = 0; then the roots are

x=0 rc.arcx=0=(1.)

y=1 arc y = Q = (2.)

g=—1 arcz=— Q= (3.)
and the sum, viz.

(L) 4 @) —6) =2Q,
which is therefore the value of the constant.

Ex. 3. When x is not actually = 0, as in the last example, but has an indefinitely
small value = o, it will be found that the values of y and z differ from 1 and — 1 by
a quantity of the order of »%. But nevertheless the arcs which subtend these abscissee
differ from a quadrant of the ellipse by a quantity of the order of w. This arises from
the direction of the arc at the extremities of the axis being perpendicular to the
abscissa, so that its increment is infinitely greater than that of the latter. It will be
well to show the truth of the theorem in this case. When « =« we have (putting
1—e2=10?%

y=1——75

Z=—1.
For from these values we deduce y 4+ 2 = 0, and thence (neglecting quantities of the
order «*)

m+y+z=m=w
xy+mz+yz=yz=—y2=é?4i-—l
Y%= — w.

So that 2y % are roots of
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s g 1—e
2’ — wa? 4 ¢ —1)z4+ae=0,

which agrees with the given form by putting r = — a.

We have now to find the sum of the arcs.

The arc subtending the abscissa (x = ») may be considered as equal to it.

The arc subtending the abscissa y differs from the elliptic quadrant by an arc
which may be considered equal to the ordinate which corresponds to y. And the
same with respect to x. ’

Let ' be the ordinate corresponding to y. The equation of the curve gives

¥ =b/1—y%
but since

b 1= Do

2o
y2=1'— 4 "'\/l_y2=—§_ S Y = Q ?

b w

and the arc subtendingy = Q — 5.

The arc z has the same value. Therefore
arcy +arcz =2Q — b2 w;
adding arc * = @, we have

Sum of arcs =2 Q + €% w,
(or, since w = — r)
‘ =2Q—¢é’r,
in accordance with the theorem.

1
Ex. 4. Let 1 — ¢ =3

And also let r = 9 — 34/10 = — 0:4868331 ;

the roots of the equation

3
x3+rw2-|—(-:—2—l)x-—-r=0,

are
x= 05 = sin 30°
y= 098019 = sin 78° 34'
g = — 0'99336 = sin 83° 24'

Entering LeEGENDRE’s Table IX. with modulus e = \/ % = sin 54° 44' and these
amplitudes, we find
arc x = 05081
arcy = 11446
arc x = 1'1944

Sum = 2'8471
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On the other hand we have
2Q = 2arc (900) = 25224
— e2p = (03246

2Q — e2r = 28470
Sum of ares = 2'8471

Error = 0:0001

I will now indicate two other theorems respecting the sum of ¢hree elliptic arcs.
1 —e2a?

I. We may put the integral f dx \/ = in the form

l—cex

f(l +ex)de T¥en)(=a

l—ex

. 1 ..
(1 + E.Z') (1 . 'Z.Q) tO be a Symmetl‘lca] _ ';_ Th]s glves

and assume

v—1

w3+%:v2——(v+l)x+ =0,

and the result which I find is, that if three abscissee are the roots of this equation,

the sum of the corresponding arcs = 2 ea/ v 4 C.
II. We may put the integral in the form

dx \/(1 4+ 2) (1 — %a®)
142 1—a ’

(1 +2)(1 — e a?h
1 —ux

and assume = v, whence

v 41 v — 1
m3+x2—72~x+ 2 = (.

The result which I find is, that if three abscissee are the roots of this equation, the
sum of the arcs = 2,/ v + C.

These theorems respecting the sums of elliptic arcs appear to be some of the simplest
which exist; but an unlimited number of theorems of a higher order and more com-
plicated nature are obtainable, the discussion of which would lead too far at present.

Thus if we assume

1 —e2a? o1 -2
\/———————=an_1x + an-o 2" 77 4 &e.

1—a°

where the coeflicients are constants, or entire rational functions of v, we have an
equation of 2 » dimensions, which gives the sum of 2 » elliptic arcs in terms of v.

There is no difficulty, beyond the length of the operation, in deducing these
theorems, as they are all obtainable by an uniform method. But it will be of im-
portance to show the relation between them and the previously received doctrines
respecting elliptic integrals as established by LeceENDpRE and others, the connexion
between them not being at first sight very evident.
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6. Application to the Equilateral Hyperbola.

. . . d
In order to obtain a relation between three values of the integral / —xi: NATYD
which expresses the arc of the equilateral hyperbola, we may put
ST A =va+1,
r»—vir—2v=0,

we have therefore 2 v = r, and making this substitution,

whence

Also

x® 2 x &2
Now we have
7 de__ r dr__d_r
9Ny T ey T g0
and
1 q r
Sz =%=—7%
d dr
So==7
4
x° 2 4 4

so that if three abscissae of the equilateral hyperbola are roots of the equation
2
a® — % x—1r =20,

3
the sum of the arcs = --r + C, which is the theorem which I originally met with

concerning the hyperbolic arc*.
It will be seen how very simply and directly we are conducted to it by the present

method of investigation. Next let us suppose

-1+ at=va® 41,

whence
. x 2
:v‘—-F+—v—-—O.
2
Putv=——r~,

* Philosophica Transactions, 1836, Part I. p. 185.
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1.2
.r3—~‘—l-m-r_.0,
and
V1 24 2z 1
T Tt
Therefore
V1 + 2t _ d x
S — d _.—7Swdx+S;2—,
but
dx dr
SE=T

T L 4 o
_Sw.dm:_%f—dr=—idr

.z.s
S '
Sf%g.d::::%r—l—c.

This result therefore agrees with the last example, and gives the same theorem, but
it supplies a different demonstration of it.
We will now suppose

VT4 at a v
—w T lt ot

a being a constant. This gives

a+ 2 »?

P4 5 tva +

1

za =0
and I find this result, that if three abscissee are roots of this equation, which may be
written
B—=pa?+tgr—r=0,
then the sum of the arcs

=p-—3:—+const.=¢v+0.

This sum is therefore constant if ¢ v is so.

Let v=Fk, v = ¥, be two values of v, which give the same value to ¢ v, or p — 3;

Let the three hyperbolic arcs in the first case be « &' &, and in the second case

B B @', then
u+“,+“’,=ﬁ+6'+ﬁ"'

All the abscissz have the same origin at the centre of the curve, therefore the arcs
have the same origin, and therefore can be subtracted from one another. Therefore
putting e — B =1y, &' — ' =49/, ' — 3" = ¢, we have

v+o +o =0
This appears to me to show the possibility of finding three arcs such that (neglecting
MDCCCXXXVIL D
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their signs) the sum of two of them shall be equal to the third (though not super-
posable in any part). I believe that it has been hitherto held that this equality is
impossible in the ellipse and hyperbola, without the addition of some algebraic quan-
tity. 1 should have wished therefore to have added some numerical illustration of
such a result, but the length of the calculation has hitherto prevented me from
doing so.



